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Scenarios & state variables:
Arctic system(s), responses to Arctic change &
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@ Understanding Arctic Change Workshop Report
(2012): Rationale & needs & key questions

(1) Intersection of Arctic system science & studies of Arctic change

(2) Societal needs require advances in climate-system research focused on
interactions between physical-biological-human systems

(3) Research questions/programs (also) need to frame problems in terms of
management or decision challenges

(4) Development of tools for scaling Arctic-level patterns down to the local-
regional level at which most decision-makers operate

(i) How predictable are different aspects of Arctic system; how can improved
understanding of predictability facilitate planning, mitigation & adaptation?

(ii) What are Arctic system tipping points?

(iii) How will critical intersections between human and natural systems in the
Arctic change over next several decades?

(iv) What are the critical linkages between Arctic & global system(s)?

(v) How will changes in cryosphere drive changes in economic, social &
environmental components of the Arctic system?



Intersection of agency, stakeholder &
scientific community interests
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Observing, understanding & responding
to Arctic change

(1) Observing, understanding & responding to Arctic change
requires past data and future projections of the state of Arctic
system(s)

(2) State variables — e.g., equation of state of seawater

Description of the physico-chemical state (e.g., a body of
water — T, S, P)

Specification of (non)equilibrium conditions (e.q.,
supercooling)

Prediction of future states (e.g., freezing with lowering of T)
Derivation of other variables and properties (e.g.,
compressibility or speed of sound from T, S, P)

(3) What is our understanding of Arctic system state variables?
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Arctic System on Trajectory to
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Francis et al. (2009)

e Francis et al. (2009): An arctic hydrologic system in transition: Feedbacks
and impacts on terrestrial, marine, and human life; J. Geophys. Res. 114, doi:

10.1029/20081G000902.

e Hinzman et al. (2013): Trajectory of the Arctic as an integrated system; Ecol.
Applic. 23, 1837-
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Arctic System Science: State variables (1)
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Arctic System Science: State variables (2)
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Intersection of agency, stakeholder &
scientific community interests



@ State variables for the Arctic
as a social-environmental system

(1) Nature of state variables in social-environmental systems beyond key
concepts poorly understood
(2) Rigorous studies defining and exploring state variables lacking; potential
tools include earth-system models, statistical analysis and reduction of large
datasets, expert knowledge and heuristic approaches
(3) In the Arctic need for prioritization and coordination of long-term
observations of Arctic change and associated decision-making drive
identification of “state” variables, e.qg.:
- North Slope Science Initiative emerging issues
- European Environment Agency indicator variables
(4) State or indicator variables help link Arctic system science to stakeholder-
desired outcomes & decision-making (K2A)
(5) Challenges:
- Lack of clear definition of state variables in social-env. Systems
- Data for candidate variables are scattered and poorly accessible even to
scientific research community
- State variables or indicators commonly defined post-hoc
(6) Co-production of iconic time series



State variables for the Arctic
as a social-environmental system
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@ European Environment Agency indicators

(1) European Environment Agency (EEA) has identified indicator variables to
help guide EU policy and action at the pan-European and global scale

(2) 177 total indicators, ranging from Agriculture (n=13) to Transport (n=36) to
Environment & Health (n=10)

(3) The following indicators are related to Arctic and/or cold regions:
- Greenland ice sheet (cumulative seasonal mass loss & melt)
- European snow cover extent trend
- Arctic & Baltic sea ice extent (min/max, trend)
- Permafrost (borehole temps in Europe, projected changes in total
permafrost area)
- Cumulative mass balance of European glaciers
- Duration in ice cover on a lake and a river in Europe

(4) Need for Arctic sustainability indicators identified by European Commission
Directorate for Maritime Affairs and Fisheries



European Environment Agency indicators

Key policy question: What is the trend in the temperature and the thawing depth of permafrost soils across
Europe?

Key messages

= In the past 10-20 years European permafrost has shown a general warming trend, with greatest warming in the cold permafrost in Svalbard
and Scandinavia. The depth of seasonal thaw has increased at several European permafrost sites. Some sites show great interannual variability,
which reflects the complex interaction between the atmospheric conditions and local snow and ground characteristics.

= Recent projections agree on substantial near-surface permafrost degradation resulting in thaw depth deepening (i.e. permafrost degeneration)
over much of the permafrost area.

= Warming and thawing of permafrost is expected to increase the risk of rock falls, debris flows and ground subsidence. Thawing of permafrost
also affects biodiversity and can contribute to climate change through release of CO, and CH,4 from Arctic permafrost areas.

Fig. 1: Observed permafrost temperatures from selected boreholes in European mountains
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Note: The figure shows trends in observed permafrost temperatures from 10 m (left) and 20 m (right) depth for selected boreholes in European mountains: the sites include the PACE
transect and two additional sites in the Swiss Alps(and two in Norway (Dovrefjell and Iskoras).

s s http://www.eea.europa.eu/data-and-maps/

= Permafrost in the Swiss Alps provided by University of Zurich

indicators




@ State variables for the Arctic
as a social-environmental system

(1) Nature of state variables in social-environmental systems beyond key
concepts poorly understood
(2) Rigorous studies defining and exploring state variables lacking; potential
tools include earth-system models, statistical analysis and reduction of large
datasets, expert knowledge and heuristic approaches
(3) In the Arctic need for prioritization and coordination of long-term
observations of Arctic change and associated decision-making drive
identification of “state” variables, e.qg.:
- North Slope Science Initiative emerging issues
- European Environment Agency indicator variables
(4) State or indicator variables help link Arctic system science to stakeholder-
desired outcomes & decision-making (K2A)
(5) Challenges:
- Lack of clear definition of state variables in social-env. Systems
- Data for candidate variables are scattered and poorly accessible even to
scientific research community
- State variables or indicators commonly defined post-hoc
(6) Co-production of iconic time series



State variables
&
iconic Arctic system time series



Selawik, Northwest Arctic Borough, Alaska Ambler, Northwest Arctic Borough, Alaska
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Population dynamics of four smaller Northwest Arctic Borough
villages, 1990-2006. Vertical line segments show estimated net
migration effects. Note the different scales used in each graph. From
Hamilton & Mitiguy (Arctic) 2009
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Bowhead whale harvests in Gambell and Savoonga (St. Lawrence Island, Alaska) since the early
1970s. Note the innovation starting around 1990, in which the whalers began taking whales in
fall as well as spring. This is a reflection of later freeze-up, making it possible to go boating later
in the year, as well as an increased whale quota, leaving whale strikes available in the fall for use
by these villages. The time series thus reflects the intersection of physical (sea ice) and societal
(whale quota) changes, and shows the result of innovation, not just the negative impacts usually
attributed to climate change.

Graph taken from:
Noongwook, G., the Native Village of Savoonga, the Native Village of Gambell, H.P.
Huntington, and J.C. George. 2007. Traditional knowledge of the bowhead whale (Balaena

mysticetus) around St. Lawrence Island, Alaska. Arctic 60(1):47-54.

Original data from Alaska Eskimo Whaling Commission and North Slope Borough Dept. of
Wildlife Management.
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Olivia Lee:

This figure shows an index describing trends in
species abundance for 323 species from 1970
to 2007. Even though the figure shows general
trends, there are some sampling biases that
require special consideration in interpretation.



Seasonal Time Series of Arctic
Amplification
Based on 1000 hPa Temperature Anomalies
Arctic (70°N to 90°N) — Mid-Latitudes (30°N to 60°N)
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Northern Hemisphere Snow Cover Anomalies
1967-2014 May
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Fig. 4. Rate of mass change of the four main ice-sheet regions, as derived from the four techniques
of satellite RA (cyan), IOM (red), LA (green), and gravimetry (blue), with uncertainty ranges (light
shading). Rates of mass balance derived from ICESat LA data were computed as constant and time-
varying trends in Antarcti@ and Greenland, respectively. The gravimetry and RA mass trends were
computed after applying a 13-month moving average to the relative mass time series. Where temporal
vanations are resolved, there is often consistency in the interannual variability as determined by the
independent data sets.
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Arctic sea ice extent & area by month 11/1978-12/2013
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Arctic Sea Ice Is Thinning

Ice depth levels in autumn
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Caspar Ammann




Barrow, Alaska, Unlted States (BRW)
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